放心购买_mplus正版软件版本
  • 放心购买_mplus正版软件版本
  • 放心购买_mplus正版软件版本
  • 放心购买_mplus正版软件版本

产品描述

使用期限永久 许可形式单机和网络版 原产地美国 介质下载 适用平台windows,mac
科学软件网提供的软件覆盖各个学科,软件数量达1000余款,满足各高校和企事业单位的科研需求。此外,科学软件网还提供软件培训和研讨会服务,目前视频课程达80门,涵盖40款软件。
Mplus Base Program and Combination Add-On
Mplus Base Program and Combination Add-On包含了Mplus Base Program and the Mixture and Multilevel Add-Ons的所有功能。此外,它还包括处理同一模型中的集群数据和潜在类的模型。例如,两级回归混合分析、二级混合验证因子分析(CFA)和结构方程模型(SEM)、二级潜类分析、多层增长混合模型、二级离散和连续时间生存混合分析。其他功能包括缺失数据估计;复杂的调查数据分析,包括分层、聚类和不平等的选择概率(抽样权重);用极大似然法分析潜在变量相互作用和非线性因素;随机斜率;个体变化的观测次数;非线性参数约束;所有结果类型的极大似然估计。贝叶斯分析与多重归责原则;蒙特卡罗模拟功能以及后处理图形模型。

适用平台
• Microsoft Windows 7/8/10
• Mac OS X 10.8或更高版本
• Linux (已在下面的平台中测试过: Ubuntu, RedHat, Fedora, Debian和Gentoo)
• 至少1GB以上的内存
• 至少120 MB硬盘空间

The arrows in the figure represent regression relationships between variables. Regressions relationships that are allowed but not specifically shown in the figure include regressions among observed outcome variables, among continuous latent variables, and among categorical latent variables. For continuous outcome variables, linear regression models are used. For censored outcome variables, censored (tobit) regression models are used, with or without inflation at the censoring point. For binary and ordered categorical outcomes, probit or logistic regressions models are used. For unordered categorical outcomes, multinomial logistic regression models are used. For count outcomes, Poisson and negative binomial regression models are used, with or without inflation at the zero point.
mplus正版软件版本
SEOBSERVATIONS = variable EQ _CLUSVAR;
New plot options are available for time-series analysis including a step function to allow day of the week effects, more than one Loop insert, and histograms for each time point.
mplus正版软件版本
The Mplus modeling framework draws on the unifying theme of latent variables. The generality of the Mplus modeling framework comes from the unique use of both continuous and categorical latent variables. Continuous latent variables are used to represent factors corresponding to unobserved constructs, random effects corresponding to individual differences in development, random effects corresponding to variation in coefficients across groups in hierarchical data, frailties corresponding to unobserved heterogeneity in survival time, liabilities corresponding to genetic susceptibility to disease, and latent response variable values corresponding to missing data. Categorical latent variables are used to represent latent classes corresponding to homogeneous groups of individuals, latent trajectory classes corresponding to types of development in unobserved populations, mixture components corresponding to finite mixtures of unobserved populations, and latent response variable categories corresponding to missing data.
mplus正版软件版本
Mplus是一款统计建模程序,给研究人员提供了一个灵活的分析数据的工具。Mplus界面简单、数据和分析结果以图形显示,为研究人员提供广泛的模型、估计和算法的选择。Mplus允许进行横截面和纵向、单级和多级数据分析;来自不同人群的观测数据或未观测到的异质性数据,以及包含缺失值的数据都可以进行分析。可以对连续、删失、二进制、有序分类(序数)、无序类别(计数)、计数或这些变量类型的组合观测变量都可以进行分析。此外,Mplus还具有广泛的蒙特卡罗模拟功能,程序中包含的任何模型,都可以生成和分析数据。


Mplus的建模框架借鉴了潜变量的统一主题。而且一般的建模框架来自连续和分类潜变量的使用。连续潜变量用于表示与未观测到的构造相对应的因素,随机效应与发展中的个体差异相对应,随机效应与分层数据中各组间系数变化相对应,弱点对应于生存时间的异质性,责任与疾病遗传易感性相对应,潜在响应变量值与缺失数据相对应。分类潜变量对应于均质个体群,潜在的轨迹分类对应于未观测种群的发展类型,混合组件对应于未观测种群的有限混合,潜在响应变量类别对应于缺失数据。


Mplus Base Program and Combination Add-On
Mplus Base Program and Combination Add-On包含了Mplus Base Program and the Mixture and Multilevel Add-Ons的所有功能。此外,它还包括处理同一模型中的集群数据和潜在类的模型。例如,两级回归混合分析、二级混合验证因子分析(CFA)和结构方程模型(SEM)、二级潜类分析、多层增长混合模型、二级离散和连续时间生存混合分析。其他功能包括缺失数据估计;复杂的调查数据分析,包括分层、聚类和不平等的选择概率(抽样权重);用极大似然法分析潜在变量相互作用和非线性因素;随机斜率;个体变化的观测次数;非线性参数约束;所有结果类型的极大似然估计。贝叶斯分析与多重归责原则;蒙特卡罗模拟功能以及后处理图形模型。


适用平台
Microsoft Windows 7/8/10
Mac OS X 10.8或更高版本
Linux (已在下面的平台中测试过: Ubuntu, RedHat, Fedora, Debian和Gentoo)
至少1GB以上的内存
至少120 MB硬盘空间
2020年,北京天演融智软件有限公司申请高等教育司产学合作协同育人项目,“大数据”和“机器学习”师资培训项目,以及基于OBE的教考分离改革与教学评测项目已获得批准。我们将会跟更多的高校合作,产学融合协同育人。
http://www.kxrjsoft.com.cn
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第3056602位访客
版权所有 ©2025-01-20 京ICP备10040123号

北京天演融智软件有限公司 保留所有权利.

技术支持: 八方资源网 免责声明 管理员入口 网站地图